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Nondegenerate Surface-Wave Mode Coupling.,

Between Dielectric Waveguides

EDWARD F. KUESTER, STUDENT MEMBER, IEEE, AND DAVID C. CHANG, MEMBER IEILE

Abstract—A new variational derivation of the coupling coefficient

is given for the problem of nondegenerate surface-wave modes on
parallel dielectric waveguides. The results coincide with those of a

number of dblerent methods in the literature on the degenerate case,

but ,@l give distinct results in the nondegenerate case. These dif-
ferences are examined and compared with the exact solution,
whereby the approximations involved csn be evaluated for the case

of two parallel slab waveguides.

I. INTRODUCTION

T HERE EXISTS in the literature a number of theo-

retical treatments of the problem of coupling between

parallel dielectric-waveguide surface-wave modes [1]-[7]

for application to optical guiding structures. It is the pur-

pose of this paper to derive by a variational technique a

new expression for the coupling between two such guides,

and to investigate the relationships between the various

theories in situations where their results differ, that is,

in the nondegenerate case. For the case of two parallel

slab waveguides these results are compared with a numeri-

cal solution of the exact modal equation, and conditions

for the validity of the various approximations are given.

II. COUPLING BETWEEN TWO ISOTROPIC

GUIDES

For simplicity we consider first the case of two parallel

isotropic (but possibly Iossy and inhomogeneous) wave-

guides as shown in Fig. 1. The relative permittivities

Fig. 1. Geometry of two parallel guides.

dropped when not required. If the guides are sufficiently

far apart, the fact that the fields of each guide mode are

evanescent outside the guide and thus, small compared

to the fields of the other guide in its vicinity leads us to

search for system modes with propagation constant r

whose fields we represent approximately as

Z’ = ml~l + m.J’2 H = m~iil + rnJ72

with the relative components ml and ~ of modes 1 and 2,

as yet, arbitrary. The present approach is related to that

of [6], [7].

Etarrington [8] has derived a variational formula for

the propagation constant of a general unifol~m lossy in-

homogeneous isotropic waveguide

Ael = An12 and AQ = An# are “difference” permittivities Here the integrals are over the (infinite) crow section of

which, against the background of es = nj’, form the two the guide, V, is the transverse delta operator, and ~~ and

dielectric surface waveguides. We consider a s~gle surface- H~ are the so-called “transpose” fields corresponding to

wave mode on each of the guides 1 and 2, with field dis- a mode traveling with propagation constant —~, and are

tributions in the transverse (x–y) plane given by E,,, and related in this cafie to E and # by

~lz and propagation constants & and &. The t and z

dependence is assumed to be exp [j(at – @z)] and is lj$~ = E, E.+ = –E= Ht+ = –Ht H.+ = H,. (2)

We note that @l, & and HI or & @z, and Et will in-
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suit is
m12Nl + 2ml~K + m22Nz

r= (3)
mltP1 + 2m1mzL + m22Pz ~= (ii’ – r7P1 =. 4r– K

(9a)
where LI’-K (iih’ – vP2

!
where

P,,, =2 [8,,,, xtitl,,]. azd8 (4)

/31,2’ = Pu2+&JPl,z~Dl,z. (9b)

and
The term cZl,Z/Pi,* in (9b) is exponentially small to the

N1,2 = I%,J’1,2 + dl,2 second order with respect to f?l,2 for well-separated guides,

because the exponentially decayed fields ~l,z are squared

dl,z = ctwo
/

AE2,1tiI,2.fiI,2~ d~ and only occur in the cross section of the other guide.

Solving (9a) forthe propagation constant I’, we obtain

r+ = PI’ + 62’ – @LWplpZ)+ [(A’ – 62’)2+ (4/pIp2) (K – &’-L) (K – L%’-L)11’2
2(1 – L2/PlP2)

(lOa)

All surface integrations are over the infinite cross section

in the transverse plane; however, since the integrands for

dl,z are zero outside Sz,l (because Ae2,1 ~ O outside S2,1),

these are only finite surface integrals.

Using the vector identity [2]

where A is an area in the transverse plane, C is its bound-

ary, and G. and d. are unit vectors in the .z direction and

the outward normal direction to C, respectively, we let

F = ~E,~ x HZ – EZ x H,+] exp [.i(@l – l%)z] (6)

and after some manipulation obtain

L= = K=
/31cl – ,8X2

61 – (32 (31 “– b,

(7)

where

Again, the infinite surface integrals for c1,2reduce to finite

ones since the integrands vanish outside S1,2. To determine

the stationary values of I’ and the corresponding values

of the only other unknown q = m2/m~, we apply the con-

ditions ar/~ml = O and tir/am2 = O, [6], [7]. The re-

fer the two possible system modes. Now since our separa-

tion assumptions further imply

L<< P1,z and K<< i31,zP1,z

(exponentially to the first order), we may simplify the

foregoing expression to yield

r+ = Pa. * Ar

where

6*. N ;(P1 + B2) Ar N (A2 + &) ’/z

and

A = ~ (B1 – &) 62 = clcz/P@z.

The ratio q = m2/ml is also obtainable from

(l@a) or (lOb) as

[

–A + (A2 + C12)112
q* = (P1/P2) 1/2

6 1
if we define 6 from (12) as

(lOb)

(11)

(12)

(9) and

(13)

6= C2
(PIP,) “12

(c,/C,) 1/2 = _3...._

(P,p2)l/2 (c2/cl)l”. (14)

The two system-mode fields are thus

a.+ = ml(fi~ + q@2) (15)

and similarly for ~.+. This means if we have a general

field E given in terms of the coupling of the two individual

waveguide modes as

E = A1(Z)E, + A2(Z)E2 (16a)

this field must be uniquely expressible also in terms of the

system modes

1? = A+E.~ exp ( –jr<) + A=,. exp ( –jI’._z) (16b)

where A+, A– are mode amplitudes of the two system

modes. We have, by comparing these two expressions, and

the use of (15), the following relationships:



KUESTER AND CHANG: DIELECTRIC WAVEGUIDES 879

A,(z) = A+ exp ( –jr+z) + A- exp ( –.@4)

.&(z) = A+q+ exp ( –jr+~) + A.-q- exp ( –jI’_z). (17)

In order to examine how the conventional coupled-mode

equations can be derived from the present approach, we

first solve from (17) for A.* exp ( –jI’*,z) and then differ-

entiate with respect to z to obtain

[1[
.~A,(z) PI 6 (P2/PJ 112

H 1
A,(z)

.
‘z

A,(z) a (P1/P2) ‘/2 /32 A, (z)

(18)

where use has been made” of ( 10b) and (13). If we intro-

duce normalized amplitudes a, = A, (Pi) l/Z we can write

the foregoing equation as

which me the standard coupled-mode equations [1], [2],

[4], [5] for this pair of modes. We note that our approach

can, in fact, be generalized to include an arbitrary number

of modes on an arbitrary number of waveguides, as well

as to anisotropic media [9], whereas it is not clear how

some of the other methods could be so generalized.

III. RELATIONS TO OTHER METHODS

The result ( 10b) derived here agrees with those ob-

tained by Marcuse [1] and Snyder [2], but has the addi-

tional advantage of assuming second-order accuracy in the

error fields when (10a) is used because of the variational

nature of the technique employed. To investigate the

relationships of this method to others in the literature, we

consider the auxiliary geometries shown in Fig. 1. It will

be noted that to calculate c1 or Q requires a surface in-

tegration over the finite cross section t.S’lor tS,, respectively.

Arnaud [3] also obtains (11) and (12), with the excep-

tion that his coupling constants are given by contour in-

tegrals of the type

(19)

and &a,&b are outward unit normal vectors on contours

C. and C~ as indicated in Fig. 1. To transform (8) into a

similar integral, we apply again the ideqtity (5) to the

vector ~ of (6), with A and C now replaced by i% and C.

or ~b and Cb, and obtain

/

CI = (Ql—f?2)Da—jea

Equation (20) holds for arbitrary contours Ca,b ad en-

closed surfaces S. ,b subject only to the condition that

SI (respectively, S2) be completely contained in Sa (re-

spectively, Sb) (see Fig. 1). In the degenerate case

(81 = b), and iq partifiular when the finite portions of
C. and Cb are allowed to coincide we hav~ e. = – eb =

jcl = jcz and our result therefore coincides with that of

Arnaud [3]. However, for nondegenerate modes, his re-

sults correspond to ours only if the Da ,b terms can be

neglected. We will see in the next section that the error

incurred by this neglect may in fact be quite large if Co

is chosen close to one of the guides.

Alternatively, we may choose C. and C,5 to coincide

with the boundary contours Cl and Cz of the individual

guides. Now the Da,b become Dl,z which are likely to be

much smaller than in the previous case, and although we

now have two contour integrals el and ez to evaluate, they

are both along finite contours and therefore presumably

easier to calculate numerically. These coupling constants

are the ones obtained in the detailed treatment of the

Iossless-fiber case by Vanclooster and Phariseau [4] whose

connection with the Marcuse–Snyder form is mentioned

by Snyder [2]. Again, c, = c? = –jet = +jez holds

exactly in the degenerate case; all results are identical

and the contour (s) may be taken anywhere outside the

guides that suits the particular problem’s geometry.

Jones [5] obtains the same form for the coupling con-

stants as in [4] by a method which is noteworthy insofar

as it is the only formally exact treatment, including the

continuous-mode spectrum of both guides.t Although both

[4] and [5] consider only the specific case of a circular

fiber, it is evident from the derivation of (19) and (20)

that their results apply to the general case. Matsuhara

and Kum.agai [6], [7] have used E- and H-field vari-

ational principles in a derivation similar to that used here

with a mixed-field principle. These can be shown to give

results close to ours in the present case if 1.461,2I << I C3 I

(i.e., the guides are weakly guiding) and the modes are

degenerate [9], but in general, since these methods serve

to determine @2rather than P, direct comparison with

coupled-mode theory is more difficult.

IV. RESUILTS FOR SLAB WAVEGIJIDES

In order to quantitatively compare the various results

presented here, we consider two parallel slab waveguides

of widths dl = 2CL1and dz = 2az separated by a width d,2

as shown in Fig. 2, Guide 1, guide 2, and the substrates

me taken to have dielectric constants cl = I(:S+ flel,ez =

63 + AG2, and es, respectively, which are asmmed to be
constant scalars, but may be complex. For simplicity we

consider only the coupling between even TE modes of

these structures; results will be similar for other cases.

where
1Snyder’s’ method [21, while exact for the isolated perturbed

D.tb =
\

fiber, can only be heuristically extended to the multiple fiber case.
[E,+ X H, – E, X i?,+].as dS. ZNo confusion of the widths d used above should arise with the

s. ,b quantities dl and d, used in Section II.
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z
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xl=af+d/2

Fig. 2. Geometry of twoparallel slab guides.

As is well known, we may write the fields of either guide

in isolation as

I

E., = A, COS p~X~

1H., = — (Pi/oJI.LO)Ai sin pixi, lxil<ai

I
,.

3wAicospiaiexp [–-ti(l w I – ai)],
‘z’ = Ix, I Cdyo

I

IHz, = – &OA; cos p;ai exp [–7;(I z, j – a,)]

outside the slabs, where ~i2 = /3i2 — ko%3,and the pi satisfy

the chm-acteristie equation

tari piai = -yi/P;

or equivalently

pi ., ‘Yi
cos piai =

kl)(q – et) 1(’ ‘ln ‘iai = ko(q – 63) ‘/’ “

The previous equations are used to calculate the various

quantities relevant to the coupling problem.

To compare the coupling coefficients of Marcuse,

Snyder, Arnaud, and Jones for various degrees of non-

degeneracy (in the degenerate case all three are equiv-

alent as discussed in Section III), we calculate 8 as used

in (10) – ( 14), labeling them il~, ti~, and IS7,respectively,

where

* = P12P22 f=p [– (7I + 72)cZ]
(24)

4M2(al + 1/71) (a2 + 1(72) “

Also, note that our first-order result ( 10b) coincides with

(21), but retaining all the terms in (lOa) allows us to ob-

tain a second-order approximation for I’* as well. In

Figs. 3 and 4, the differences between ~M2, 6A2, and 6J2 are

plotted against the degree of degeneracy of the modes,

due to differences between al and az. These relative differ-

ences are independent of d, and become most pronounced

(82-8,7)/s5. .

I0.03

0.02 -

--0.01

-3 XI0-3 -2 XI0-3 -I XIO-3 o

0.50 0.60 0.70 0.80 0.90 I .0
‘,:5 02/ol

Fig. 3. Comparison of I$J2 and &# for the TEO mode ~ a-function
of relative slab widths. Q = 1.00, c1 = .s2 = 1.04, lc~al = 8.68.

(82-8; )/8:
A

- -0.003

-0.002

--0.001

(/32 -Bl)//3l
-3.10-3 -2 XI0-3 -I XI O-3 o + I Xl O-s

0.50 0.60 0.70 o.eo 0.90 I.O ‘,:5 a2/oi

Fig. 4. Comparison of tiJ2 and ~.A2for the TE o mode as a function
of relative slab widths. et = 1.00, 61 = eZ = 1.04, kti~ = 8.68.

~M2 = Q E(71 + 72) + (%
– 72) fq ( –%2fd 1[(71+ 72) + (?2 – -d exp ( –%w2) 1

[ko’(,l – 6,)+ @,2– p,’][k,z(q – .,) + p,z– p,’]
(21)

(71 + 72)2
(22)

~A2 = Q~$(q- ‘k3)(62 – 4

~J2 = Q [(w+ 72) + (71 – v2) ew ( –b2aJ ][(T1 + v2) + (-Y2 – -n) eq (–%%)]

ko4(el – C3) (C2 – 63)

(23)
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REL. ERR.
IN A13 k to cutoff, the less nondegeneracy maybe tolerated be-

A tween the two modes to allow Arnaud’s contour to be
o,/a* =1.0

— JONES
arbitrarily chosen,

o.o1-- ‘--- 2nd OROER SOL’N. Further, in order to be able to neglect the D.,b or DI,2

terms which are the difference between Arnmd’s, Jones’,

Marcuse’s, and Snyder’s coupling coefficients, we must be

o- able to say

I.0
I m – m I exp (–2al,m,l) <<I m + w I (27)

-0.01 4 as well as

I @12– pz’ I << k12 I Ae1,2 I . (28)
Fig. 5. Comparison of calculated exact value of Ar = +(r+ – r_)

for two degenerate TEo slab modes with Jones’ value and the However, (25) clearly implies (27), and (:26) similarly
second-order value from (10). 68= 1.00, c1= ~z= 1.04, ?cOal= 8.68. imdies (28). Hence, the choice between any of these for-

REL. ERR.
mulas is arbitrary so long as the approximate e degeneracy

IN A@ condition (25), (26) holds. Moreover, if I A I >> ] 3 I , the

l\

calculation of AI’ is virtually independent of 6, and since

0.04 no significant power transfer occurs, this casl~ is academic

0,/o~ = 1.8 anyway.
— JONES

‘--- 2nd ORDER SOL’N. V. CONCLUSION

0.02

t\

‘\.
o \
o. I 1.0

-d/ol
10 I00

Fig. 6. Comparison of calculated exact value of M’ = *(1’+ – r_)
for two nondegenerate TEO slab modes to Jones’ value and the
second-order value from (10). <s = 1.00,,1 = c* = 1.04, 7ciIu1= 8.68.

when one of the modes comes close to cutoff, but are zero

in the degenerate case.

In Figs. 5 and 6, Ar = ~ ( 1’+ – I’_) is compared for a

degenerate and a nondegenerate case of the result using

Jones’ coupling constant, the second-order variational

result obtained by keeping all terms in (10), and the exact

result, obtained by solving the exact modal characteristic

equation for the system [10].3 The variational result is

quite superior close to the guide, when the other result

becomes much more in error.

In Arnaud’s paper [3] it was assumed that the finite

part of the contour (which in the two-dimensional slab

case degenerates from a line integral into simply the value

of the fields at a single point: xl = al + d/2 + win Fig. 2)

could be chosen anywhere; however, in the nondegenerate

case, it is apparent that this can result in a relative error

of a factor as large as exp [+ (72 — T1) d/2] in evaluating

6A. Now this is absorbed into a factor exp [– (-YI + -yJd/2];

then, to assure an error bound on log 8 we require

171–72! <<171+721 (25)

or equivalently

(26)

one consequence of (25) is that the closer one of the modes

3Clearly, for such a highly nondegenerate case as depicted in
Fig. 6, the coupling will be poorly described by only two modes,
and more would be required to represent the situation with reason-
able accuracy (see Section V).

It seems appropriate to conclude with a few general

remarks about the assumptions necessary to treat the

current problem by coupled-mode theory. In the” first

place, it is important to realize the sensitivity of any of

the expressions for the coupling coefficients ik) the use of

inexact fields therein. Marcatili [11], for instance, has

obtained good results for the propagation constant of a

rectangular dielectric waveguide sufficient [y far from

cutoff, even though the assumed fields outside the guide

differ rather seriously from the actual ones. However, it

has been shown [12], [13] that since the coupling co-

efficients are obviously quite strongly dependent upon the

exterior field forms, the values of the coupling coefficient

found in [11] can be quite inaccurate.

If it is desired to include more guided modes of the iso-

lated guides in the analysis, the present variational tech-

nique can be extended in a straightforward fashion [9].

In general, to investigate coupling lengths and power

transfer from a given mode, it is necessary lo include all

modes with values of pi sufficiently close to the mode of

interest; more quantitative criteria can be found else-

where [2], [9], [14]. The coupling length:~ and trans-

ferred powers will depend only upon the various system-

mode propagation constants r~ (as well as the unperturbed

~{) which are calculated using a variational formula, and so
will be relatively insensitive to the presence or absence of

the fields of those modes with ,6 sufficiently far from the

fl; of the modes of interest. In Section IV it was seen that

the 1’+ were most accurately calculated for i~he slab case

using (10), with the second-order terms retained. This, as

well as retaining additional modes, will give a higher degree

of accuracy in the coupled-mode analysis of such systems.

Strictly speaking, we should include continuous spec-

trum (radiation) modes to accurately represent the fields

of the system. Since each guide possesses a set of such

modes which is (in conjunction with the surface-wave

modes) complete, a certain arbitrariness is inlherent in the

expansion of system-mode fields in such a case. The vari-
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ational method automatically adjusts the amplitudes of

surface-wave modes in the appropriate manner to con-

struct the system modes, but the various integrals in

Section II will diverge if radiation modes are used, so that

some modification of the present method would be neces-

sary to treat problems of this type.
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Single-Mode Puke Dispersion in Optical Waveguides

EDWARD F. KUESTER, STUDENT MEMBER, IE~E, AND DAVID C. CHANG, MEMBER, IEEE

Abstract—The limitations of a widely used method for analyzing
puke distortion in a single-mode waveguiding structure are derived.
The results are applied to propagation in optical waveguides, and for

cases where materiaf dispersion is dominated by a broad resonance
line, pulse attenuation is found to be much more serious than the

broadening of the pulse. In extremely low-loss regions, however,
other effects may cause the reverse to be true.

I. INTRODUCTION

WITH THE RECENT development of extremely

low-loss optical waveguides [1] rnaklng feasible

long-distance transmission via this medium, there has

been increased interest in determining the pulse charac-

teristics of such devices [2], [3]. These characteristics

are determined by the nonlinearity of the L? — u charac-
teristics of individual modes, and, in multimode guides,

by the differences in group velocity between different

modes. In thk paper we address ourselves to the first of

these causes, referring the reader to [3] for a discussion

of the second.
We shall obtain a more precise formulation for the

Manuscript received March 19, 1975; revised June 5, 1975. This
work was supported by the Air Force Office of Scientific Research
under Grant AFOSR-72-2417.

The authors are with the Electromagnetic Laboratory, Depar&
ment of Electrical Engineering, University of Colorado, Boulder,
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region of validity of a widely used tectilque [2], [4]–[6]

“for analyzing, approximately, the distortion of a single

pulse, and apply these results to the study of such pulses

in optical waveguides.

II. PROPAGATION OF A GAUSSIAN PULSE

We seek to analyze the behavior of a pulse of Gaussian

envelope

j(t) = (a%)-’/2 exp ( – t2/2a2) exp (jcoOt) (1)

with center frequency LOoand width a which has been

normalized to unit strength

/

m

_@\ f(t) pat= 1

as it propagates along an arbitrary transmission channel of

transfer function S(u) = exp[–jfl (~) L]. Here L is the

length of a section of the channel between the input

(.z = O) and the output, and ~(~) = h(co) – ~&(co) is

the frequency-dependent propagation constant of the

channel split into phase constant and (power) attenua-

tion constant. The output signal is then represented by

the usual Fourier-transform method

(2)


