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Nondegenerate Surface-Wave Mode Coupling

Between Dielectric Waveguides

EDWARD F. KUESTER, stTupeNT MEMBER, IEEE, AND DAVID C. CHANG, MEMBER IELE

Abstract—A new variational derivation of the coupling coefficient
is given for the problem of nondegenerate surface-wave modes on
parallel dielectric waveguides. The results coincide with those of a
number of different methods in the literature on the degenerate case,
but all give distinct results in the nondegenerate case. These dif-
ferences are examined and compared with the exact solution,
whereby the approximations involved can be evaluated for the case
of two parallel slab waveguides.

I. INTRODUCTION

HERE EXISTS in the literature a number of theo-

- retical treatments of the problem of coupling between
parallel dielectric-waveguide surface-wave modes [1-[7]
for application to optical guiding structures. It is the pur-
pose of this paper to derive by a variational technique a
new expression for the coupling between two such guides,
and to investigate the relationships between the various
theories in situations where their results differ, that is,
in the nondegenerate case. For the case of two parallel
slab waveguides these results are compared with a numeri-
cal solution of the exact modal equation, and conditions
for the validity of the Variou/s approximations are given.

II. COUPLING BETWEEN TWO ISOTROPIC
GUIDES
For simplicity we consider first the case of two parallel
isotropic (but possibly lossy and inhomogeneous) wave-
guides as shown in Fig. 1. The relative permittivities

wf [eBl-B+ — uH-H*]dS 4 j[ [E*-v, X H + A*+-v, X £]dS

Fig. 1. Geometry of two parallel guides.

dropped when not required. If the guides are sufficiently
far apart, the fact that the fields of each guide mode are
evanescent outside the guide and thus, small compared
to the fields of the other guide in its vicinity leads us to
search for system modes with propagation constant T
whose fields we represent approximately as

E_ = m1E_'1 -+ ’I’l’LzEz FI = mlfll <+ m‘!f{2

with the relative components m; and m; of modes 1 and 2,
as yet, arbitrary. The present approach is related to that
of [6], [7]. )

Harrington [8] has derived a variational formula for
the propagation constant of a general uniform lossy in-
homogeneous isotropic waveguide

ﬁ:

f[Et+ X H — B, X [?t+:|'dz as

Ae = Am? and Ae: = Ang? are “difference” permittivities
which, against the background of e; = ns?, form the two
dielectric surface waveguides. We consider a single surface-
wave mode on each of the guides 1 and 2, with field dis-
tributions in the transverse (z-y) plane given by E:; and
H,; and propagation constants 8; and 8.. The ¢ and 2
dependence is assumed to be exp [ j(wt — B2)] and is
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Here the integrals are over the (infinite) cross section of
the guide, V, is the transverse delta operator, and B+ and
H* are the so-called “transpose” fields corresponding to
a mode traveling with propagation constant —3, and are
related in this case to £ and H by

E+x=E, BEf=—E, Hf= —H, H+=H, (2

We note that 8y, By, and H, or Bs, Fs, and H, will in-
dividually satisfy (1) if Ae; or Ae; is set equal to zero, re-
spectively. To find the system mode propagation con-
stants T', we insert our trial fields into (1) and find the
stationary values. We obtain
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_ m®N1 + 2mmeK + ma?Ne
" m2Py + 2mgm, L 4 ma?Py

(3)

where

Piy =2 [ (s X Hual-d.d8 )

and

N1,2 = 61,2P1,2 + d1,2

d1_2 = wéo/ A€2,1E-'1,2’E1,2+ dS
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sult is
B/ =P, . LT — K
1="Ir—k ~ (&' - DO)Ps (92)
where
Bro’ = Br2+ dra/Pi2™ Brs. (9b)

The term d; /P12 in (9b) is exponentially small to the
second order with respect to 81,2 for well-separated guides,
because the exponentially decayed fields E; » are squared
and only occur in the cross section of the other guide.
Solving (9a) for the propagation constant I', we obtain

B + B — (2LK/P:1Ps) % [(B — B)* 4+ (4/PPs) (K ~ B/L) (K — B,/L) J*

I‘ﬂ:=

K = {wéo/ (Aél + Aéz)El'E’2+ dS

DD | et

- Bl/ (ﬁ2+'dz X El + E2+‘dz X gl) dS
- ﬂz/ (Ha, X By + Evtea, X Hy) dS}

L= [ [t X H, — By X H+]-a. dS.

All surface integrations are over the infinite cross section
in the transverse plane; however, since the integrands for
dy 2 are zero outside S (because Ae; &= 0 outside S, ),
these are only finite surface integrals.

Using the vector identity [2]

_ d - _
f v.Fds = -f FeadS+ $ Feandl  (5)
4 9z /4 c
where A is an area in the transverse plane, C is its bound-
ary, and &, and g, are unit vectors in the z direction and
the outward normal direction to C, respectively, we let

F=[B* X Hy — Fo X Hyt]exp [J(B — B2)2] (6)
and after some manipulation obtain
7 = i — Gy 3161 Baca (7
B — B Br— B2
where
Cio = weo/ Ael,zEl'Eg"' ds. (8)

Again, the infinite surface integrals for ¢ » reduce to finite
ones since the integrands vanish outside S, ». To determine
the stationary values of T" and the corresponding values
of the only other unknown ¢ = m./m, we apply the con-
ditions dT/dm; = 0 and aT'/am, = 0, [6], [7]. The re-

2(1 — L*/P,Py)

(102)

for the two possible system modes. Now since our separa~

tion assumptions further imply
LK P2 and K <K Bi2P12

(exponentially to the first order), we may simplify the
foregoing expression to yield

Iy = Bav £ AT (10b)
where
Bav ™~ 5(B1+ B2) AT~ (A2 4 &)'02 (11)
and
A =3B — B2) & = cies/PriPs. (12)

The ratio ¢ = my/m, is also obtainable from (9) and
(10a) or (10b) as

— A+ (A2 4 8 1/2
s (Pypyn | TAEEEDT gy
if we define 8 from (12) as
%]
= g (/" = g (/o) (14
The two system-mode fields are thus
By = m(By + qub) (15)

and similarly for H.,. This means if we have a general
field E given in terms of the coupling of the two individual
waveguide modes as

E = A4,(2)Er + A3(2) E: (16a)

this field must be uniquely expressible also in terms of the
system modes

E = A\E,, exp (—jT42) + A_E, exp (—jT-2z) (16b)

where A, A_ are mode amplitudes of the two system
modes. We have, by comparing these two expressions, and
the use of (15), the following relationships:
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Ay(2) = Ay exp (—jT42) + A_exp (—jT2)
As(z) = Ayqrexp (—jT42) + A_g_exp (—jT2). (17)

In order to examine how the conventional coupled-mode
equations can be derived from the present approach, we
first solve from (17) for A.. exp (—jT'.2) and then differ-
entiate with respect to z to obtain

4[4 B 8(Py/P)™] [4i(e)

7= =

% | 4,(2) 5(Py/Py) 02 B 4s(2)
(18)

where use has been made of (10b) and (13). If we intro-
duce normalized amplitudes a, = A4,(P;)Y% we can write
the foregoing equation as

d (251 )81 ] a;
j -
dz a2 5 B az
which are the standard coupled-mode equations [17], [2],
[47), [5] for this pair of modes. We note that our approach
can, in fact, be generalized to include an arbitrary number
of modes on an arbitrary number of waveguides, as well
as to anisotropic media [97, whereas it is not clear how
some of the other methods could be so generalized.

IIT. RELATIONS TO OTHER METHODS

The result (10b) derived here agrees with those ob-
tained by Marcuse [1] and Snyder [27], but has the addi-
tional advantage of assuming second-order accuracy in the
error fields when (10a) is used because of the variational
nature of the technique employed. To investigate the
relationships of this method to others in the literature, we
consider the auxiliary geomstries shown in Fig. 1. Tt will
be noted that to calculate ¢; or ¢ requires a surface in-
tegration over the finite cross section S; or Ss, respectively.
Arnaud [37 also obtains (11) and (12), with the excep-
tion that his coupling constants are given by contour in-
tegrals of the type

é; = fc.[E-’f" X ﬁz —_ .E_z X iIf"]'(im dl, fOI' Z = a,b
(19)

and @nq,d. are outward unit normal vectors on contours
C, and C% as indicated in Fig. 1..To transform (8) into a
similar Integral, we apply again the idengity (5) to the
vector F of (6), with A and C now replaced by S, and C,
or 8 and Cy, and obtain

a = (b1 — Ba)Ds — je,

—ec; = (1 — B2) Dy — jey (20)

where

D,y = / (Ei+ X Hy — By X Hy*]-a. dS.
s

a b
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Equation (20) holds for arbitrary contours C,; and en-
closed surfaces S, subject only to the condition that
S: (respectively, S;) be completely contained in S, (re-
spectively, S;) (see Fig. 1). In the degenecrate case
(81 = B:), and in particular when the finite portions of
C, and C, are allowed to coincide we have ¢, = —e =
jer = jea and our result therefore coincides with that of
Arnaud [3]. However, for nondegenerate modes, his re-
sults correspond to ours only if the D, {erms can be
neglected. We will see in the next section that the error
incurred by this neglect may in fact be quite large if C,
is chosen close to one of the guides. H

Alternatively, we may choose C, and C, to coincide
with the boundary contours C; and C; of the individual
guides. Now the D, become Dy 2 which are likely to be
much smaller than in the previous case, and although we
now have two contour integrals e; and e; to ‘evé,luate, they
are both along finite contours and therefore presumably
easier to calculate numerically. These coupling constants
are the ones obtained in the detailed treatment of the
lossless-fiber case by Vanclooster and Phariseau [4] whose
connection with the Marcuse-Snyder form is mentioned
by Snyder [2]. Again, ¢ = ¢ = —jer = +je; holds
exactly in the degenerate case; all results are identical
and the contour(s) may be taken anywhere outside the
guides that suits the particular problem’s geometry.

Jones [5] obtains the same form for the coupling con-
stants as in [4] by a method which is noteworthy insofar
as it is the only formally exact treatment, including, the
continuous-mode spectrum of both guides.! Although both
[4] and [5] consider only the specific case of a circular
fiber, it is evident from the derivation of (19) and (20)
that their results apply to the general case. Matsuhara
and Kumagai [6], [7] have used E- and H-field vari-
ational principles in a derivation similar to that used here
with a mixed-field principle. These can be shown to give
results close to ours in the present case if |- Ae2 | < | €]
(i.e., the guides are weakly guiding) and the modes are
degenerate [97, but in general, since these methods serve
to determine @? rather than g, direct comparison with
coupled-mode theory is more difficult.

IV. RESULTS FOR SLAB WAVEGUIDES

In order to quantitatively compare the various results
presented here, we consider two parallel slab waveguides
of widths di = 2a; and dy = 2a, separated by a width d,?
as shown in Fig. 2. Guide 1, guide 2, and the substrates
are taken to have dielectric constants & = & + Ae,e =
€3 + Aez, and e, respectively, which are assumed to be
constant scalars, but may be complex. For simplicity we
consider only the coupling between even TE modes of
these structures; results will be similar for other cases.

! Snyder’s method [2], while exact for the isolated perturbed
fiber, can only be heuristically extended to the multiple fiber case.

2 No confusion of the widths d used above should arise with the
quantities d; and d» used in Section II.
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Fig. 2. Geometry of two parallel slab guides.

As is well known, we may write the fields of either guide
in isolation as

E,, = A, cos px;
H., = —(pi/op) Assin pi, | 2] < a;
H,, = —(B:/wu) A; cOS D

inside the slabs, where p;2 = ke; — 8.2, and

Ey. = A;cos piaiexp [—vi(| ;| — a))]

_ xi‘ ]"'Yi
| 2. | wuo

—a;) ],

[xz]>az

A; cos pia;exp [—vi(] = |

24

H, = — B A;cos pig;exp [—vi(| x| — a:)]
Wiko

outside the slabs, where v;2 = 8,2 — ke%;, and the B satisfy
the characteristic equation :

. tai p;a; = ’Yi/Pi
or equivalently

Y
ko(e; — €3)12

Yi

sin pig; = ——————,
e P—T

COS Pia; =
The previous equations are used to calculate the various
quantities relevant to the coupling problem.

To compare the coupling coeflicients of Marcuse,
Snyder, Arhaud, and Jones for various degrees of non-
degeneracy (in the degenerate case all three are equiv-
alent as discussed in Section III), we calculate 6 as used
in (10)-(14), labeling them 8y, 84, and 87, respectively,

[+ v2) + (vr — v2) exp (—2v200) JL(v1 + v2) + (72 — 1) exp (—2via) ]
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where

Q- pps? exp [— (71 + v2)d]

 4B1Be(as + 1/m1) (as + 1(ya) 24)

Also, note that our first-order result (10b) coincides with
(21), but retaining all the terms in (10a) allows us to ob-
tain a second-order approximation for T'y as well. In
Figs. 3 and 4 the differences between 812, 842, and 6,2 are
plotted against the degree of degeneracy of the modes,
due to differences between a; and a;. These relative differ-
ences are independent of d, and become most pronounced

2_g2 2
(8 TSJ)/SJ

10.03
{0.02
+0.01
i : = / (Ba-81) /8
-3x107%  -2x107®  -ixi07® 0 +ixio™3 T2 TV
+ — t ——+ +—+——— ap /a4
0.50 0.60 0.70 0.80 0.90 1.0 i.5

Fig. 3. Comparison of 8,2 and 32 for the TE, mode as a funetion
of relative slab widths. & = 1.00, &6 = €2 = 1.04, kea; = 8.68.

242,52
(3 8‘1)/8‘J
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—3xio'3 -2x|=0'3 -|x;o-$ o :;;O-?, (B2-81)/84
050 oo obto obo o.iso o TG 9274

Fig. 4. Comparison of 3,% and 342 for the TE, mode as a function
of relative slab widths. & = 1.00, &1 = €2 = 1.04, keaty = 8.68.

ot =4 (ke (er — €) + Be* — Bi*][ke* (e — &) + B2 — B2] @
. (v + v2)?

84" = k(e — &) (& — e3) =

5,0 = @ LT 72 + (0~ 7) exp (=27,0) I + 70) + (s — 1) exp (= 2v10) ] (23)

ko4(€1 - 63) (62 - 63)



KUESTER AND CHANG: DIELECTRIC WAVEGUIDES
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Fig. 5. Comparison of calculated exaet value of AT = 3(T",. — I'_)
for two degenerate TE, slab modes with Jones’ value and the
second-order value from (10). s = 1.00, ¢, = ¢; = 1.04, koo = 8.68.

REL. ERR.
IN AB
0.041
ay/ap = 1.8
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N\,
o] . 4 } d/ay
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Fig. 6. Comparison of calculated exact value of AT = 3(I', — I'_)
for two nondegenerate TE, slab modes to Jones’ value and the
second-order value from (10). es = 1.00, ¢; = ez = 1.04, koa; = 8.68.

when one of the modes comes close to cutoff, but are zero
in the degenerate case.

In Figs. 5 and 6, AT = 3(I'; — I'_) is compared for a
degenerate and a nondegenerate case of the result using
Jones’ coupling constant, the second-order variational
result obtained by keeping all terms in (10), and the exact
result, obtained by solving the exact modal characteristic
equation for the system [107].3 The variational result is
quite superior close to the guide, when the other result
becomes much more in error.

In Arnaud’s paper [3] it was assumed that the finite
part of the contour (which in the two-dimensional slab
case degenerates from a line integral into simply the value
of the fields at a single point: ; = a; + d/2 4 win Fig. 2)
could be chosen anywhere; however, in the nondegenerate
case, it is apparent that this can result in a relative error
of a factor as large as exp [+ (v2 — v1)d/2] in evaluating
4. Now this is absorbed into a factor exp [ — (y1 + v2)d/27;
then, to assure an error bound on log § we require

[v1— 7 | << |71+ 72| (25)
or equivalently
B1.2* — ki’es
— L4~ 2
|8 =] B1+ B (26)

One consequence of (25) is that the closer one of the modes

#Clearly, for such a highly nondegenerate case as depicted in
Fig. 6, the coupling will be poorly described by only two modes,
and more would be required to represent the situation with reason-
able accuracy (see Section V).
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is to cutoff, the less nondegeneracy may be tolerated be-
tween the two modes to allow Arnaud’s contour to be
arbitrarily chosen.

Further, in order to be able to neglect the D, or Dy,
terms which are the difference between Arnaud’s, Jones’,
Marcuse’s, and Snyder’s coupling coefficients, we must be
able to say

Lvi — 72| exp (—2a10721) < |71k ve]  (27)

as well as
[ B2 — B | K ke | Aerp | . (28)

However, (25) clearly implies (27), and (26) similarly
implies (28). Hence, the choice between any of these for-
mulas is arbitrary so long as the approximate degeneracy
condition (25), (26) holds. Moreover, if | A|>> 6§, the
calculation of AT is virtually independent of 5, and since
no significant power transfer occurs, this case is academic
anyway.
V. CONCLUSION

It seems appropriate to conclude with a few general
remarks about the assumptions necessary to treat the
current problem by coupled-mode theory. In the first
place, it is important to realize the sensitivity of any of
the expressions for the coupling coefficients to the use of
inexact fields therein. Marcatili [11], for instance, has
obtained good results for the propagation constant of a
rectangular dielectric waveguide sufficiently far from
cutoff, even though the assumed fields outside the guide
differ rather seriously from the actual ones. However, it
has been shown [127, [137] that since the coupling co-
efficients are obviously quite strongly dependent upon the
exterior field forms, the values of the coupling coefficient
found in [11] can be quite inaccurate.

If it is desired to include more guided modes of the iso-
lated guides in the analysis, the present variational tech-
nique can be extended in a straightforward fashion [9].
In general, to investigate coupling lengths and power
transfer from a given mode, it is necessary to include all
modes with values of 8; sufficiently close to the mode of
interest; more quantitative criteria can be found else-
where [2], [9], [14]. The coupling lengths and trans-
ferred powers will depend only upon the various system-
mode propagation constants I'; (as well as the unperturbed
B:) which are calculated using a variational formula, and so
will be relatively insensitive to the presence or absence of
the fields of those modes with g8 sufficiently far from the
B; of the modes of interest. In Section IV it was seen that
the I'y were most accurately calculated for the slab case
using (10), with the second-order terms retained. This, as
well as retaining additional modes, will give a higher degree
of accuracy in the coupled-mode analysis of such systems.

Strictly speaking, we should include continuous spec-
trum (radiation) modes to accurately represent the fields -
of the system. Since each guide possesses a set of such
modes which is (in conjunction with the surface-wave
modes) complete, a certain arbitrariness is inherent in the
expansion of system-mode fields in such a case. The vari-
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ational method automatically adjusts the amplitudes of
surface-wave modes in the appropriate manner to con-
struct the system modes, but the various integrals in
Section IT will diverge if radiation modes are used, so that
some modification of the present method would be neces-
sary to treat problems of this type.
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Single-Mode Pulse Dispersion in Optical Waveguides

EDWARD F. KUESTER, sSTUDENT MEMBER, IEEE, AND DAVID C. CHANG, MEMBER, 1EEE

Abstract—~The limitations of a widely used method for analyzing
pulse distortion in a single-mode waveguiding structure are derived.
The results are applied to propagation in optical waveguides, and for
cases where material dispersion is dominated by a broad resonance
line, pulse attenuation is found to be much more serious than the
broadening of the pulse. In extremely low-loss regions, however,
other effects may cause the reverse to be true.

I. INTRODUCTION

ITH THE RECENT development of extremely
low-loss optical waveguides [1] making feasible
long-distance transmission via this medium, there has
been increased interest in determining the pulse charac-
teristics of such devices [2], [3]. These characteristics
are determined by the nonlinearity of the 8 — « charac-
teristies of individual modes, and, in multimode guides,
by the differences in group velocity between different
modes. In this paper we address ourselves to the first of
these causes, referring the reader to [37] for a discussion
of the second.
We shall obtain a more precise formulation for the
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region of validity of a widely used technique [2], [4]-[6]
for analyzing, approximately, the distortion of a single
pulse, and apply these results to the study of such pulses
in optical waveguides.

II. PROPAGATION OF A GAUSSIAN PULSE

We seek to analyze the behavior of a pulse of Gaussian
envelope

F(®) = (aVr)=2 exp(—1/2a2) exp (juot) (1)

with center frequency wp and width ¢ which has been
normalized to unit strength

[15w =1

as it propagates along an arbitrary transmission channel of
transfer function S(w) = exp[—jB8{(w)L]. Here L is the
length of a section of the channel between the input
(z = 0) and the output, and g(w) = h(w) — }ja(w) is
the frequency-dependent propagation constant of the
channel split into phase constant and (power) attenua-
tion constant. The output signal is then represented by
the usual Fourier-transform method

1 -]
alt) = 5 /_ F@)S@) expie) da (2)



